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We use a Jastrow-Slater wave function with an elliptical Fermi sea to describe the nematic state of the
two-dimensional electron gas in a magnetic field and the Monte Carlo method to calculate a variational energy
upper bound. These energy upper bounds are compared with other upper bounds describing stripe-ordered
ground states, which are obtained from optimized Hartree-Fock calculations, and with those which correspond
to an isotropic ground state. Our findings support the conclusions drawn in our previous study, where the
Fermi-hypernetted chain approximation was used instead of the Monte Carlo method. Namely, the nematic
state becomes energetically favorable relative to the stripe-ordered Wigner crystal phase for the second excited
Landau level and below a critical value of the layer “thickness” parameter, which is very close to its value in
the actual materials.
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I. INTRODUCTION

The measurements of Lilly et al.1 and Du et al.2 reveal
strong anisotropic transport properties of the two-
dimensional electron gas �2DEG� for the half-filled Landau-
level �LL� system for high LLs and at very low temperature.
The anisotropic behavior in the transport properties is con-
sistent with stripe and bubble charge-density-wave phases,
which were predicted early on in Refs. 3–5 by means of
Hartree-Fock �HF� calculations of the 2DEG and were con-
firmed more recently by numerical studies of systems with
up to 12 electrons.6,7 However, Fradkin et al.8 have chal-
lenged this interpretation and suggested that the anisotropic
transport might be due to a possible nematic phase of the
2DEG in a magnetic field. This idea finds support in the good
comparison between the results of the temperature depen-
dence of the anisotropy of the resistivity obtained by means
of a Monte Carlo �MC� simulation of the nematic phase9

with that which has been experimentally observed. In addi-
tion, the idea is supported by the experiments of Cooper et
al.10 where an in-plane magnetic field was applied in the
2DEG and the results of the experiment were interpreted on
the basis of the presence of a nematic state; further support
of the idea is provided by the fact that the theoretically esti-
mated transition temperature from an isotropic to nematic
phase11 is of similar magnitude as the experimentally deter-
mined temperature at which the onset of the anisotropic
transport occurs.

Rather recently, we have presented12 a variational calcu-
lation of the nematic state as ground state of the half-filled
LL system in a magnetic field based on an ansatz ground-
state wave function proposed by Oganesyan et al.,13 which is
of the Jastrow-Slater form and is given by the following
expression:

��r�1,r�2, . . . ,r�N� = P̂0�
j�k

N

�zj − zk�2e−�k=1
N �zk�2/4

�det��k��r�i�� , �1�

where P̂0 is the projection operator onto the lowest LL �LLL�

and �k��r�i� are 2D plane-wave states. Here, zj =xj + iyj is the
complex 2D coordinate of the j electron. This wave function
is a Jastrow correlated Slater determinant with Jastrow part
similar to the Laughlin state.14 This ground-state wave func-
tion has the same form as the form proposed by Rezayi and
Read;15 however, the single-particle momenta form an ellip-
tical Fermi sea as opposed to the circular Fermi sea. There is
a broken-symmetry parameter, which is the ratio �=k1 /k2 of
the semimajor k1 and semiminor k2 axes of the elliptical
Fermi sea. Using this wave function to describe the nematic
state, we had carried out a variational study of the half-filled
system using the so-called Fermi-hypernetted-chain �FHNC�
approximation.12

The results of the above mentioned variational calculation
indicate that there is a certain value of the parameter � �� is
proportional to the 2DEG layer thickness16� below which the
nematic state is energetically favorable as compared to the
isotropic and the stripe-ordered ground states for the second
excited LL. It is interesting to note that this critical value of
� is very close to the value of �, which can be estimated
based on the actual experimental conditions which are appli-
cable for the case of the data by Lilly et al.1 and by Du et al.2

However, one of the weak points of the above described
variational study is the fact that the FHNC approximation is
plagued by an unknown-size error and the results cannot be
improved in a controlled manner.17 Therefore, there is a need
to check the validity of these results and conclusions using
the variational MC method and this task is undertaken in the
present work.

There is a different variational approach to the problem of
a broken rotational state of the half-filled LL introduced by
Ciftja and Wexler.18 They have used the FHNC approxima-
tion to study a broken rotational state of the half-filled LL,
where the symmetry-breaking parameter was introduced in
the correlation part of the wave function as �zi−zj�2→ �zi
−zj −���zi−zj +��, and they used the standard single-particle
determinant with a circular Fermi sea.

In this paper and in the work of Ref. 12, we considered
the unprojected wave function of the nematic state. The ad-
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vantage of this simplified version is that it has a Jastrow form
with a Slater determinant so it can be applied directly with
FHNC and it allows us to study large-size systems using the
variational MC method. The paper is organized as follows:
In Sec. II we discuss the formulation and the procedure. In
Sec. III we present the results and we compare them with
those obtained for the case of a stripe-ordered and the iso-
tropic states. In Sec. IV we summarize the conclusions of the
present calculation.

II. METHOD

We have adopted the toroidal geometry of a square with
periodic boundary conditions. This geometry has the advan-
tage of naturally adapting to the nematic and isotropic state
wave function. There are several steps in applying the MC
approach for this problem. First, as part of the wave function
of nematic state, we construct a Slater determinant of plane
waves characterized by momentum vectors, which lie inside
an elliptical Fermi sea. Second, since the pseudopotential is
ln�r�, which is a long-range interaction, we need to to take
into account all periodic image charge interactions. One of
the methods to do this is the Ewald summation technique. In
Appendix A1, we describe the Ewald summation technique
for the case of toroidal boundary conditions and the ln�r�
interaction. In the present section, we will discuss our imple-
mentation of the MC to study the nematic state.

Given a value of � there are definite values of the number
of particles N, which correspond to a closed shell. These
definite values of N are calculated as follows. The occupied
states characterized by kx ,ky must satisfy the following con-
dition:

� kx

k1
�2

+ � ky

k2
�2

� 1, �2�

where k1 and k2 are the major and minor axes of the Fermi
sea and are given by

k1 =�4	


�
, �3�

k2 = �4	
� , �4�

where 
 is the uniform particle density of the system. For a
finite system of size L�L, kx=nx�k, and ky =ny�k where
�k=2	 /L and nx ,ny �Z. So one can deduce the conditions
for nx ,ny, such that

	

N
��nx

2 +
ny

2

�
� � 1. �5�

For a value of N to be acceptable, the number of states, i.e.,
the number of pairs �nx ,ny� satisfying the above inequality
should be equal to N. For example, for �=1, N can be
1,5,9,13,21,25,29,37,45,…; for �=2, they can be
1,3,7,11,15,17,21,….

In Fig. 1, we present two examples of closed shell, which
correspond to �=2 and 4 for N=89. Notice that with aniso-
tropy parameter �=kx /ky �1, the occupied states �i.e, those

satisfying Eq. �5�� are anisotropically distributed along the
preferred kx axis. In our MC calculation, we will use these
cases as well as larger size systems up to 145 particles.

We follow the metropolis MC scheme for sampling the
wave function where the ratio needed between the new and
the old wave function is

	
�r�new�

�r�old�

	2

= exp„u�r�new� − u�r�old�…	Det�eik� ·r�new�

Det�eik� ·r�old�
	 , �6�

where u�r�� is the periodic pseudopotential, which is derived
in Appendix A1. To carry out the calculation of the ratio
between the Slater determinant of the new and the old con-
figurations efficiently, we use the inverse updating technique
developed by Ceperley et al.19 We found that the number of
MC steps needed for “thermalization” is of the order of 105

and we use the order of 2�106 MC steps to calculate aver-
ages of the distribution function.

The potential energy of the high LL can be expressed18

via the pair distribution function of the LLL using the single-
mode approximation discussed in Ref. 20, namely,

VL =



2

 �g�r�� − 1�Veff

L �r�d2r , �7�

where the effective potential Veff
L �r� for LL L is the convolu-

tion of the effective interaction16

V�r� = e2/��r2 + �2, �8�

with the L-order Laguerre polynomial; namely, it is the Fou-
rier transform of

Ṽeff
L �q� =

2	e2

�q
e−�q�LL�q2/2��2, �9�

In the above formula, � is a length scale which characterizes
the confinement of the electron wave function in the direc-
tion perpendicular to the heterojunction.16

We use the single-mode approximation to calculate the
interaction energy at high LL �Eq. �7�� and we are only in-
terested in obtaining the pair distribution function g�r��. The
kinetic-energy advantage of the isotropic phase over the
nematic phase is calculated in Appendix A2. The approach
can be divided into the following steps: �i� The pair distribu-
tion function for the LLL for different anisotropic parameters
� is calculated. �ii� The single-mode approximation20 is used
to calculate the interaction energies at a high LL. �iii� The
kinetic energy for different anisotropic parameters is evalu-
ated �see Appendix A2�. �iv� We compare total energies of
the isotropic and nematic state to determine at what LL the
nematic becomes energetically favorable. �v� The optimum
value of � is determined by minimizing the total energy. �vi�
The HF results, which have been reported so far,21–23 corre-
spond to the case of �=0. Therefore, we needed to carry out
HF calculations following Refs 21–23 for the case of the
interaction given by Eq. �8� for ��0. The optimum total
energies of the nematic states will be compared with those of
the stripe states at different values of � for the second excited
LL to determine a critical value of � below which the nem-
atic state maybe energetically favorable. �vii� The above
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mentioned critical value of � is compared to the value, which
corresponds to those samples used in the experiment.1 �viii�
A comparison of the MC results to the ones obtained by
FHNC will also be presented.

III. RESULTS

First, we would like to note that we believe that finite-size
effects are small in our MC calculation. This was concluded
by comparing the potential energy and distribution function
for various size lattices ranging from 89 up to 241 electrons.
For example, we find that the energy is the same within
statistical error bars for systems of 121 and 241 particles. In
addition, we find that the critical value of �, below which the
nematic state becomes energetically favorable, remains the
same �again within our statistical error bars� for the range of
size systems discussed above.

The pair distribution function g�r� obtained using MC in-
tegration has important differences when compared to g�r�
obtained by FHNC �Ref. 12� as illustrated in Fig. 2. Thus, it
is important to obtain the energies of the nematic state at
high LL by MC and to compare them with those obtained by
FHNC.

We first compare the interaction energies obtained for dif-
ferent values of ��1 with the potential energy of the isotro-

pic state ��=1� �Figs. 3 and 4�. Notice from Figs. 3 and 4
that the potential energy of the isotropic state is lower than
the potential energy of the nematic state for the first excited
LL and LLL for all values of the parameter �. The potential
energy is calculated with the pseudopotential obtained using
the Ewald sum as discussed in Appendix A1. Essentially the
same result is also found with a pseudopotential obtained
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FIG. 1. Occupied states for the nematic state
with �=2 �top� and �=4 �bottom� for the case of
89 particles.
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FIG. 2. Comparison of the pair distribution function obtained by
FHNC and MC.
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using the Lekner summation technique.24 Furthermore, as
shown in Appendix A2, the kinetic energy of the isotropic
state is below that of the nematic state and, thus, the total
energy of the isotropic state is always lower than that of the
nematic state. Hence, our MC calculation shows that the iso-
tropic state is energetically favorable as compared to the
nematic state for the LLL and the first excited LL for all
values of the parameter �. Also note that the same conclusion
was reached using the FHNC technique12 with the same
wave function. These findings solidify the conclusion that for
the LLL and the first excited LL, the isotropic state is more
stable than the nematic state, which is also in agreement with
the experimental findings of Refs. 1 and 2.

For the second excited LL, however, the situation changes
as illustrated in Fig. 5. The conclusion, which can be drawn
from the comparison of Fig. 5, is that the interaction energy
of the nematic state is lower than that of the isotropic state
for all values of �. However, we need to compare the total
energy of the nematic state with that of the isotropic state for
the second excited LL �Fig. 6�. From Fig. 6, we conclude that
the nematic state is energetically favorable as compared to

the isotropic state for the second excited LL for the range of
the parameter ��0.4. Note that in using FHNC we found12

that for ��0.6, the total energy of the nematic state is lower
than the energy of the isotropic state. In summary, both
FHNC and MC yield similar conclusions about the stability
of the nematic state against the isotropic state for the second
excited LL.

In Refs. 3–5 the stripe-ordered phase was predicted based
on HF calculations and this ordering can also explain the
anisotropy observed in the transport properties of the 2DEG
at low temperature. Therefore, we need to investigate the
stability of the nematic state against the stripe-ordered state
as follows. First, we find the optimum energies of the nem-
atic state with respect to the anisotropic parameter � for
various values of �. Next, we compare these with the opti-
mum energies of the stripe state obtained by the HF
approximation.21–23 Calculations for the case where �=0
have been carried out in Refs. 21–23. For making a compari-
son with the optimum energy of the nematic state at various
values of �, we carried out detailed HF calculations for the
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FIG. 3. Comparison of the potential energy of the nematic state
calculated for various values of ��1 as function of � with the
isotropic state ��=1� for LLL.
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FIG. 4. Comparison of the potential energy of the nematic state
calculated for various values of ��1 as function of � with the
isotropic state ��=1� for the first excited LL.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
λ

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

V

α = 1
α = 2
α = 3
α = 4
α = 5

The isotropic state

FIG. 5. Comparison between the potential energy of the nematic
state calculated for various values of the anisotropic parameter �
�1 as a function of � and the potential energy of the isotropic state
��=1� at the second excited LL.
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FIG. 6. Comparison of total energy of the nematic state calcu-
lated for various values of the anisotropic parameter ��1 as func-
tions of � with the isotropic state ��=1� at the second excited LL.
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case where ��0. For the stripe-ordered state, the optimum
energy is obtained by minimizing the energy with respect to
the uniaxial anisotropy parameter � defined in Ref. 23. Fig-
ure 7 shows the comparison of the optimal energies obtained
by MC for the nematic state with the optimum �with respect
to �� energy for the stripe state obtained by HF. Note that for
��0.5, the optimum nematic state is obtained for �=1, i.e.,
it is the isotropic state. Furthermore, Fig. 7 demonstrates that
the nematic state is energetically lower than the stripe state
for the values of ���c=0.37.

In Fig. 8 we would like to present information on how
large the nematicity �as measured by the parameter �� be-
comes for various values of the parameter �. Figure 8�a�
presents the total energy as a function of � for fixed values
of the parameter �. Notice that for ��0.5 the miminum of
the total energy is achieved for �=1, which corresponds to
the isotropic case. For �=0.3 the minimum total energy is
obtained for �
6.5. In Fig. 8�b� we show this dependence
of the optimum value of � as a function of �. Notice that as
� becomes smaller and smaller the ground state quickly be-
comes more and more anisotropic.

As discussed earlier, the pseudopotential can be obtained
by using either the Ewald or the Lekner summation
technique.24 We have also carried out the same calculation
using the Lekner summation technique and the results ob-
tained are in good agreement with those obtained using the
Ewald summation method. Thus, we can conclude that with
MC calculation �for ���c=0.37�, the energy of the nematic
state is lower than the stripe-ordered state.

IV. CONCLUSIONS

In Fig. 9 the results for the optimum total energy of the
nematic state obtained with the variational MC method is
compared with that obtained by FHNC in Ref. 12 and with
the optimum energy of the stripe-ordered state. The critical
value of �c that we found from FHNC �Ref. 12� is 0.4, which
is close to the value of 0.37 obtained above by MC. The
critical value of � corresponding to the sample used in the

experiment,1 which was calculated in Ref. 12—using the
conditions of the experiment and sample characteristics—is
approximately 0.34, which can be below the critical value
found above. Thus, both MC and FHNC calculations indicate

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
λ

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

M
in

im
um

en
er

gy

Stripe phase of HF approximation
Nematic state of MC using Ewald sum
Isotropic state of MC using Ewald sum

λ
c

FIG. 7. Comparison of the optimal energy of the nematic state
calculated by MC using the pseudopotential obtained from the
Ewald sum with the stripe state calculated by HF as function of �.
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FIG. 8. �a� The total energy of the nematic state as a function of
the anisotropy parameter � for various values of �. This graph gives
information on the dependence of the energy on the nematicity
parameter �. �b� The optimum value of �0 is plotted as a function of
�.
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FIG. 9. Comparison of the optimum nematic state obtained from
FHNC and MC with the stripe state obtained from HF.
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that the nematic state might be the state observed experimen-
tally for the 2DEG at the heterojunction in the samples used
in the experiment as described in Ref. 1. There is still a
remaining question about the validity of our approximation
to neglect the projection operator in the wave function �Eq.
�1��. However, in both FHNC treatments of the problem,12,18

where—in addition to neglecting the projection operator for
arguments presented there—there was a second rather an-
noying question �yet rather straightforward to answer� of the
validity of the FHNC approximation in evaluating the energy
expectation value. In the present paper, the latter question is
answered by employing the MC method. Therefore, we con-
clude that the present calculations eliminate the suspicion
that the conclusions drawn in Ref. 12 might be due to an
artifact of the FHNC approximation employed in Ref. 12.
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APPENDIX

1. Ewald summation technique for the logarithmic potential

The long-range nature of the pseudopotential ln�r�, which
appears in the exponent of the wave function of the Jastrow
factor in the case of periodic boundary conditions, requires a
summation over all periodic image charges. Specifically, the
“charge” distribution required to give rise to a logarithmic
interaction is given as


�r�� = �
R�

��r� − R� � + 
background. �A1�

The 2D Poisson equation is given by

�2��r�� = − 2	
�r�� , �A2�

and its solution in 2D is the logarithmic interaction. We need
to solve the above equation for a periodic square L�L. The
idea of Ewald summation is to add around each charge an
opposite Gaussian charge distribution of an appropriately
chosen width � and, in addition, to subtract the same Gauss-
ian charge distribution. Let us split 
 into long-range and
short-range portions in the following manner:


�r�� = 
1�r�� + 
2�r�� , �A3�


1�r�� = �
R�

e−�r� − R� �2/�2

	�2 + 
background, �A4�


2�r�� = �
R�
���r� − R� � −

e−�r� − R� �2/�2

	�2 � , �A5�

�1, which corresponds to 
1, is a short-range potential and,
thus, we can calculate �1 in real space since it converges
very quickly. The other combined charge configuration, i.e.,

2, consisting of the Gaussian and the background charge
and the corresponding potential is denoted by �2. Since �2 is

a long-range potential, it will be calculated in Fourier space.
The solution to each of the Poisson’s equations for the two
charge distributions and the corresponding potential is
straightforward. We note that for our case the “charge” of the
particle is e2=2m. We find

�1�r�� =
4m	

A
�
k��0

e−�2k2/4

k2 eik� ·r�, �A6�

�2�r�� = − m�
R�

Ei�−
�r� − R� �2

�2 � . �A7�

where k� =2	 /Ln� with n� �Z2 and Ei�t� is the exponential
integral function and is defined by Ei�t�=−�−t

� e−x

x dx.
For the Ewald summation, the convergence of Eqs. �A6�

and �A7� is achieved choosing the width of the Gaussian
charge distribution �=1, the number of cells for the sum in
Eq. �A7� to be 10 and by carrying out the sum in momentum
space in Eq. �A6� over 200 k states.

In order to check the validity of this approach for the case
of our use of toroidal boundary conditions, we calculated the
distribution function and the energy for the 1/3 �m=3� case
using the expressions �A6� and �A7� and our results for the
energy and distribution function are identical to the results of
Morf and Halperin,25 who used the disk geometry.

2. Evaluation of kinetic energy of the nematic state

In this section of the appendix, we compute the kinetic-
energy difference between the nematic and the isotropic
states. In the single-LL approximation, the kinetic energy is
quenched. In addition, the same is true in the HF treatment of
the stripe, namely, there is no kinetic energy due to any cor-
relation factors or operators. While this approximation gives
a significant difference between the potential energy of the
isotropic and the nematic states, it gives no difference be-
tween their kinetic energies, which is unacceptable because
of the difference in the geometry of the Fermi sea. We want
to estimate this difference. We can start with

��� − A� �2F� , �A8�

=��� − A� �2F� + 2���� − A� �F� � � + F�2� . �A9�

The first term in the above equation yields

��� − A� �2F� =
��c

2
F� , �A10�

which is common for all states under our consideration, so
for simplicity we can drop it. The last term is

F�2� = F�
k

�2k2

2m� � . �A11�

So the contribution of the last term is
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�
k��FFS

�2k2

2m� , �A12�

where k� �FFS stands for a summation over all vectors k� in
the corresponding filled Fermi sea. The summation over the
circular Fermi sea in the isotropic case is given by

1

N
�

k�

�2k2

2m� =
�2kF

2

4m� , �A13�

and in the case of the elliptical Fermi sea in the anisotropic
case, the summation is given by

1

N
�

k�

�2k2

2m� =
�2

4m�

k1
2 + k2

2

2
. �A14�

Using the fact that kF
2 =k�1 ·k�2 and k1 /k2=�, the kinetic-energy

difference between the isotropic state and the nematic state is
given as follows:

��KE� = −
�2kF

2

4m�

�1 − ��2

2�
. �A15�
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